First-Principles Investigation of Titanium Nanoparticle Oxidation
نویسندگان
چکیده
We perform first-principles calculations to investigate the initial stages of titanium nanoparticle oxidation. We determine the most stable structure of a 181-atom decahedral nanoparticle with various oxygen coverages ranging from a single atom to full oxidation of the surface. Linear Oad−Ti−Oad bonding configurations on the nanoparticle surface are found to be most stable for low oxygen coverage. The degree of lattice expansion is observed to gradually increase with increasing oxygen content up to 8.2% for full oxidation of the surface. To investigate likely mechanisms for subsequent subsurface oxidation, we calculate energy barriers for many inequivalent oxygen diffusion pathways. We find that the most favorable pathways involve penetration of oxygen into subsurface octahedral sites in the center of facets where the strain is largest. The results provide atomistic insight into the oxidation behavior of Ti nanoparticles and highlight the important role played by adsorption induced strain.
منابع مشابه
Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کاملSynthesis of TiO2 Nanoparticle and its Application to Graphite Composite Electrode for Hydroxylamine Oxidation
In this work, sol-gel method was used tosynthesize titanium dioxide nanoparticles (TiO2). The TiO2nanoparticles was characterized by Scanning Electron Microscopy (SEM), x-ray diffraction (XRD) and BET technique.The TiO2 and coumarin derivative (7-(1,3-dithiolan-2-yl)-9, 10-dihydroxy-6H-benzofuro [3,2-c] chromen-6-on) were incorporated in a graphite composite ele...
متن کاملInvestigation on the Removal of Malachite Green from Aqueous Solutions Using Photocatalysis of Titanium Dioxide and Zinc Oxide Nanoparticles
Background & objectives: Malachite green color has been extensively used in aquaculture industry around the world. The drainage of colored wastewater containing malachite green to aquatic ecosystems has created very serious risks for human health and the environment. The purpose of this study was to investigate the removal of green malachite from aqueous solutions using photocatalysis of titani...
متن کامل